Skip to contents

This function calculates the mean density of hexagonal bins based on their neighboring bins.

Usage

compute_mean_density_hex(
  df_bin_centroids,
  num_bins_x,
  col_std_counts = "std_counts",
  col_hb_id = "hexID"
)

Arguments

df_bin_centroids

A data frame containing information about hexagonal bin centroids, including the hexagon ID and the standard normalized counts (std_counts).

num_bins_x

The number of bins along the x-axis for the hexagonal grid.

col_std_counts

The name of the column containing the standardized counts.

col_hb_id

The name of the column containing the hexagonal bin IDs.

Value

A data frame with an additional column, mean_density, representing the mean density of each hexagonal bin based on its neighboring bins.

Examples

num_bins_x <- 4
shape_value <- 1.833091
hexbin_data_object <- extract_hexbin_centroids(nldr_df = s_curve_noise_umap,
num_bins = num_bins_x, shape_val = shape_value)
df_bin_centroids <- hexbin_data_object$hexdf_data
compute_mean_density_hex(df_bin_centroids, num_bins_x)
#> # A tibble: 16 × 6
#>         x      y hexID counts std_counts mean_density
#>     <dbl>  <dbl> <int>  <int>      <dbl>        <dbl>
#>  1 -3.27  -5.74      1      2      0.222        0.722
#>  2 -1.84  -5.74      2      6      0.667        0.519
#>  3 -2.55  -4.38      6      7      0.778        0.417
#>  4 -1.12  -4.38      7      5      0.556        0.472
#>  5 -3.27  -3.01     11      2      0.222        0.519
#>  6 -1.84  -3.01     12      2      0.222        0.278
#>  7 -0.407 -3.01     13      2      0.222        0.407
#>  8 -1.12  -1.65     17      1      0.111        0.444
#>  9  0.308 -1.65     18      8      0.889        0.167
#> 10  1.02  -0.280    24      7      0.778        0.389
#> 11  0.308  1.09     28      1      0.111        0.722
#> 12  1.74   1.09     29      6      0.667        0.444
#> 13  0.308  3.82     38      2      0.222        0.889
#> 14  1.74   3.82     39      8      0.889        0.611
#> 15  1.02   5.18     44      9      1            0.833
#> 16  2.46   5.18     45      7      0.778        1